
Thomas B Winans 
John Seely Brown

Cloud computing
A collection of  
working papers 



Cloud Computing frequently is taken to be a term that simply renames 
common technologies and techniques that we have come to know in IT. 
It may be interpreted to mean data center hosting and then subsequently 
dismissed without catching the improvements to hosting called utility 
computing that permit near realtime, policy-based control of computing 
resources. Or it may be interpreted to mean only data center hosting 
rather than understood to be the significant shift in Internet application 
architecture that it is.

Perhaps it is the name. Certainly it is more nebulous than mnemonic, if 
you’ll pardon the poor pun. We happen to think so too. We’d rather use 
the term service grid, frankly, but that name also has its problems. The 
fact is that cloud and service grid computing are paradigmatically different 
from their common interpretations, and their use can shed light on how 
internet architectures are constructed and managed. 

Cloud computing represents a different way to architect and remotely 
manage computing resources. One has only to establish an account 
with Microsoft or Amazon or Google to begin building and deploying 
application systems into a cloud. These systems can be, but certainly 
are not restricted to being, simplistic. They can be web applications that 
require only http services. They might require a relational database. They 
might require web service infrastructure and message queues. There might 
be need to interoperate with CRM or e-commerce application services, 
necessitating construction of a custom technology stack to deploy into 
the cloud if these services are not already provided there. They might 
require the use of new types of persistent storage that might never have 
to be replicated because the new storage technologies build in required 
reliability. They might require the remote hosting and use of custom or 
3rd party software systems. And they might require the capability to 
programmatically increase or decrease computing resources as a function 
of business intelligence about resource demand using virtualization. While 
not all of these capabilities exist in today’s clouds, nor are all that do exist 
fully automated, a good portion of them can be provisioned.

Are the services that are provided by the cloud robust in the 
enterprise sense? 

Absolutely … especially if you mean the enterprise as we know it today. 
While there are important security, privacy and regulatory issues that 
enterprises need to sort through before full migration to the cloud, and 
cloud vendors need to strengthen cloud capabilities in these areas before 
enterprise applications can be effectively hosted in the cloud, there are 
benefits that cloud technologies do offer today that can be leveraged in 
the deployment of many enterprise applications. Further, cloud vendors 
are likely to offer virtual private cloud functionality that quite possibly will 
(at least temporarily) compensate for current deficiencies as cloud vendors 
work to address them in a more strategic and long-term way. 

Migration to the cloud will not be immediate because of issues noted 
above, and because enterprises need to approach migration in a 
staged fashion, just as they would undertake any significant technology 
transition. The first stage of migration is to determine what enterprise 
infrastructure and applications can be reliably rearchitected using cloud 
computing technologies today to gain experience with a cloud-oriented 
way of organizing and accessing digital technology. This stage may 
include development of a migration path that progressively transitions 
more of the enterprise infrastructure and applications to cloud providers 
as they evolve more robust services that can support a broader range of 
enterprise IT activities. The key goal of this stage is to define the roadmap 
to replicate what is available on premise today using cloud technologies 
(public or private) where this makes sense, and to define fundamentals 
that will guide future architecture efforts. The second stage begins a 
period in which explicitly policy based architectures that help to support 
agility and innovation are designed. The third stage is the period in 
which implementation of these fundamentally new architectures – that 
are designed to support scalable networks of relationships across large 
numbers of very diverse and independent entities (i.e., possibly leveraging 
a more fully developed service grid) – takes place.

Cloud computing A collection of working papers    i



It is critical to give explicit attention to architecture when preparing to 
migrate to the cloud, since this represents an opportunity for corporations to 
rearchitect themselves as next generation enterprises. These globalized and 
distributed enterprises must scale process and practice networks (ultimately 
comprising an entire ecosystem) to include thousands to tens of thousands 
of members, with the number of users increasing to the millions. This type 
of scale requires an architecture and interoperability strategy modulated by 
harmonized technology and business policies to scale business elastically. 
Widespread adoption of clouds as a computing platform will require 
interoperability between clouds and management of resources in one cloud 
by another. Since current-day architectures are not structured to externalize 
policy, the typical architecture fundamentals of applications that enterprises 
deploy must be modified to effectively use and exploit new cloud capabilities.

In this context, we urge executives to develop more explicit cloud computing 
strategies based on a more explicit and longer-term view of the likely 
trajectories of cloud computing evolution. There are undoubtedly compelling 
benefits to participating in clouds today. But the real power of cloud 
computing platforms stems from the potential over time to re-think and 
re-design IT architectures at a more fundamental level. Companies that gain 
early experience with this new infrastructure will be in the best position to 
harness these new architectural approaches to re-shape the broader business 
landscape.

To seed this effort, we cull from various candidate definitions for both cloud 
and service grid computing a set of concepts to be used as a thoughtful 
framework of discussion for what happens next in Internet-based computing. 
We present, here, a set of three papers that discuss: 

Characteristics of what we believe to be next generation architectures that will 
support substantive changes in global enterprise constructs and operations; 

Transformation from existing to next generation architectures to simplify the 
architectures and better align them with the businesses they enable, and 
provide the means to externalize and manage policy across all architecture 
layers; and

Pain points that might be eliminated altogether by migration to next 
generation architectures.

We understand that cloud and service grid computing, in their present state, 
do not meet all distributed computing or enterprise needs. However, they 
do meet many of them in a way that will provide a smooth transition to 
whatever next generation distributed computing becomes, and they already 
are significantly helpful in modulating the technology changes that enterprises 
face today. The rapid pace at which cloud vendors are systematizing their 
platforms and attracting stalwart industry supporters and users confirms 
that ecosystems are forming that are based upon the capabilities that cloud 
computing enables. The speed with which they are forming strongly suggests 
that cloud computing will not only meet many of the needs of enterprise 
computing as we have come to know it, but also could form the digital 
platform for a shaping strategy guiding next generation enterprises in their 
migration to and participation in such ecosystems. Hence our optimism of 
things to come, and our contribution to a discussion that we hope readers will 
find helpful.

Cloud computing A collection of working papers    ii



Foreword

Foreword by Tomi Miller and George Collins,
Deloitte Consulting LLP 

The first “Cloud Computing” conversation we have with our clients often 
starts with the question “What exactly is the Cloud?”, but becomes much 
more interesting when we move on to “What does (or should) the Cloud 
mean to my company?” These questions lead to rich discussions about 
what cloud computing promises to become as a foundational element in 
global enterprise computing and the approach they should take within 
their own firms. Most of our clients are exploring and/or experimenting 
with some aspect of the cloud today. What they seek is a roadmap that 
allows them to capitalize on the operational benefits of current cloud 
offerings, while establishing a migration path towards a business and 
architectural vision for the role cloud computing will play in their future.

Deloitte’s Center for the Edge has spent the past year combining extensive 
research and industry insights to explore the topics of cloud computing 
and next-generation web services. The following set of papers reflect this 
work from different perspectives: business drivers, architectural models, 
and transformation strategies. They outline a vision for the role of the 
cloud, describing how it can evolve and extend today's service-oriented 
architectures into business platforms for the next-generation economy. 

And so we ask the questions: is cloud computing really such a 
revolutionary concept? Or is it just a new name that describes a logical 
progression in the evolution of computing, towards the vision of a truly 
service-oriented business ecosystem? What are the key considerations for 
companies looking to leverage the cloud today, and what do they need to 
consider to effectively operate as the cloud economy emerges? 

Certainly cloud computing can bring about strategic, transformational, and 
even revolutionary benefits fundamental to future enterprise computing, 
but it also offers immediate and pragmatic opportunities to improve 
efficiencies today while cost effectively and systematically setting the stage 
for strategic change. And in many cases, the technology supporting cloud 
offerings serves to facilitate the design of a migration path that reduces 
initial investment and accelerates returns from each stage.

For organizations with significant investment in traditional software and 
hardware infrastructure, migration to the cloud will occur systematically 
and over time, as with any other significant technology transition. For 
other less-constrained organizations or those with infrastructure nearing 
end-of-life, technology re-architectures and adoption may be more 
immediate.

In either case, Deloitte’s experiences align with several key themes 
contained in the papers to follow as we assist our clients in framing 
a practical understanding of what the cloud means to them, and the 
considerations that must be made when constructing a well conceived 
adoption strategy: 

 Next-generation data center management - the business case 
behind data center strategies is changing. Data centers represent a 
very logical starting point for a new consumer of cloud services, with 
relatively low risk and potentially significant cost savings and efficiency 
gains. Transitioning existing systems to the cloud offers opportunity to 
outsource non-core functions for most businesses. At the same time, 
it provides experience with a cloud-oriented way of organizing and 
accessing digital technology that is necessary to build out a roadmap for 
sensible cloud adoption. 

 Architectural planning, simplification, and transformation – Moving 
IT platforms to the clouds represents the next logical step in a service-
oriented world, and Build v. Buy v. Lease is the new decision framework 
in service selection within this context. Understanding the level of cloud 
and internal company maturity will guide decisions such as How and 
When to leverage cloud services to support core as well as non-core 
business capabilities, and how software assets should interoperate 
to provision business functionality. It is also critical in this step to give 
explicit focus to policy-based architectures that support agility and 
innovation.

 Policy-oriented business and risk management – Policy within and 
across organization boundaries has traditionally been embedded within 
enterprise IT platforms and applications. However scaling businesses 
globally will require implementing new ways to combine and harmonize 
policies within and across external process networks and value chains. 
It will become increasingly critical for companies to establish clear and 
explicit definitions of governance, policy (regulatory, security, privacy, 
etc) and SLAs if they are to operate effectively with diverse entities in the 
cloud. 

 Cloud management – To conduct business within a cloud (recognizing 
what is available today), it is important for cloud consumers and 
providers to align on graduated SLAs and corresponding pricing models. 
Maturing cloud capabilities into more advanced offerings, such as 
virtual supply chains, requires support for fully abstracted, policy-driven 
interactions across clouds. This is a big jump, and it will become a major 
challenge for the cloud providers to adequately model, expose and 
extend policies in order to provide integrated services across distributed 
and heterogeneous business processes and infrastructure. The data 
associated with these business processes and infrastructure will need 
to be managed appropriately to address and mitigate various risks 
from a security, privacy, and regulatory compliance perspective. This is 
particularly important as intellectual property, customer, employee, and 
business partner data flows across clouds and along virtual supply chains.

Cloud computing A collection of working papers    iii



Cloud computing has captured the attention of today’s CIOs, offering huge 
potential for more flexible, readily-scalable and cost-effective IT operations. 
But the real power of cloud computing platforms is the potential over 
time to fundamentally re-think and re-design enterprise business and IT 
architectures. There is significant anticipation for emergent innovation and 
expanded capabilities of a cloud-based business environment, even though 
it is clear that today’s cloud offerings are only scratching the surface of 
this potential. As with all technology innovation, the biggest gain will be 
realized by those who first establish business practices to leverage and 
differentiate this vision, and Deloitte is excited to be actively involved in 
these activities.

Deloitte is very proud to host and sponsor the Center for the Edge, which 
focuses its attention on identifying, understanding and applying emerging 
innovations at institutional, market, geographical, and generational 
“edges” in global business contexts. We thank John Seely Brown, John 
Hagel, and Tom Winans for their thought leadership and commitment to 
stimulating the thinking required to move forward with confidence in the 
evolving world of cloud computing.

Cloud computing A collection of working papers    iv



Contents

Foreword iii
Foreword by Tomi Miller and George Collins, Deloitte Consulting LLP  iii

Demystifying clouds — Exploring cloud and service grid architectures 2
Introduction 2
An autonomic frame of mind 2
Characteristics of an autonomic service architecture 5

Architecture style 5
External user and access control management 6
Interaction container 6
Externalized policy management/policy engine 7
What is policy? 9
Utility computing  9
Cloud composition 10

Service grid — the benefit after the autonomic endpoint 11
Service grid deployment architecture 11

Container permeability 12
Cloud vendors and vendor lock-in 12
Virtual organizations and cloud computing 12
Concluding remarks 14

Moving information technology platforms to the clouds — Insights into IT platform architecture transformation 15
Introduction 15

Going-forward assumptions and disclaimers 15
Outside-in and inside-out architecture styles 15
Clouds and service grids 16
Architecture transformation 17

Transforming an existing architecture 17
Addressing architecture layering and partitioning 18
Why go to such trouble? 18
Externalizing policy 19
Replacing application functionality with (composite) services 20
Starting from scratch — maybe easier to do, but sometimes hard to sell 21

Concluding remarks 21
Motivation to leverage cloud and service grid technologies — Pain points that clouds and service grids address 23

Introduction 23
IT pain points 23

Pain point: data center management 23
Pain point: architecture transformation/evolution (the Brownfield vs. Greenfield Conundrum) 24
Pain point: policy-based management of IT platforms 25

Concluding remarks: To the 21st century and beyond 26
About the authors 27
Contact us 

Cloud computing A collection of working papers    1



Introduction

Cloud Computing is in vogue. But what is it? Is it just the same thing as 
outsourcing the hosting of Web applications? Why might it be useful and 
to whom? How does it change the future of enterprise architectures? How 
might clouds form the backbone of twenty-first-century ecosystems, virtual 
organizations and, for a particular example, healthcare systems that are 
truly open, scalable, heterogeneous and capable of supporting the players/
providers both big and small? In the past, IT architectures took aim at the 
enterprise as their endpoint. Perhaps now we must radically raise the bar 
by implementing architectures capable of supporting entire ecosystems 
and, in so doing, enable these architectures to scale both downward to an 
enterprise architecture as well as upward and outward.

We see cloud computing offerings today that are suitable to host 
enterprise architectures. But while these offerings provide clear benefit to 
corporations by providing capabilities complementary to what they have, 
the fact that they can help to elastically scale enterprise architectures 
should not be understood to also mean that simply scaling in this way 
will meet twenty-first-century computing requirements. The architecture 
requirements of large platforms like social networks are radically different 
from the requirements of a healthcare platform in which geographically 
and corporately distributed care providers, medical devices, patients, 
insurance providers, clinics, coders, and billing staff contribute information 
to patient charts according to care programs, quality of service and HIPAA 
constraints. And the requirements for both of these are very different than 
those that provision straight-through processing services common in the 
financial services industry. Clouds will have to accommodate differences in 
architecture requirements like those implied here, as well as those relating 
to characteristics we subsequently discuss. 

In this paper, we want to revisit autonomic computing, which defines a 
set of architectural characteristics to manage systems where complexity 
is increasing but must be managed without increasing costs or the size of 
the management team, where a system must be quickly adaptable to new 
technologies integrated to it, and where a system must be extensible from 
within a corporation out to the broader ecosystem and vice versa. The 
primary goal of autonomic computing is that “systems manage themselves 
according to an administrator’s goals. New components integrate … 
effortlessly ...”i. Autonomic computing per se may have been viewed 
negatively in the past years — possibly due to its biological metaphor 
or the AI or magic-happens-here feel of most autonomic initiatives. But 
innovations in cloud computing in the areas of virtualization and finer-
grained, container-based management interfaces, as well as those in 
hardware and software, are demonstrating that the goals of autonomic 
computing can be realized to a practical degree, and that they could 
be useful in developing cloud architectures capable of sustaining and 
supporting ecosystem-scaled use.

Taking an autonomic approach permits us to identify core components of 
an autonomic computing architecture that Cloud Computing instantiations 
have thus far placed little emphasis on. We identify technical characteristics 
below that must not be overlooked in future architectures, and we 
elaborate them more fully later in this paper: 

An architecture style (or styles) that should be used when implementing 
cloud-based services 

External user and access control management that enables roles and 
related responsibilities that serve as interface definitions that control 
access to and orchestrate across business functionality

An Interaction Container that encapsulates the infrastructure services and 
policy management necessary to provision interactions

An externalized policy management engine that ensures that interactions 
conform to regulatory, business partner, and infrastructure policy 
constraints 

Utility Computing capabilities necessary to manage and scale cloud-
oriented platforms 

An autonomic frame of mind

Since a widely accepted industry definition of Cloud Computing — beyond 
a relationship to the Internet and Internet technologies — does not exist at 
present, we see the term used to mean hosting of hardware in an external 
data center (sometimes called infrastructure as a service), utility computing 
(which packages computing resources so they can be used as a utility in 
an always-on, metered, and elastically scalable way), platform services 
(sometimes called middleware as a service), and application hosting 
(sometimes called software or applications as a service). All of these ways 
seem — in some way — right, but they are not helpful to understand 
the topology of a cloud, the impact that Cloud Computing will have on 
deployment of business platforms, whether or not the business system 
architecture being deployed in commercial or private data centers today 
will be effective in a cloud, or what architectures should be implemented 
for cloud-based computing. Neither do they even begin to get at the 
challenge of managing very large and dynamic organizations, called virtual 
organizations (to be defined later in this paper), that reorient thinking 
about the need for an architecture to scale massively, and the need to 
make parts of an architecture public that, to this point, have been kept 
private.

To satisfy the requirements of next century computing, cloud computing 
will need to mean more than just externalized data centers and hosting 
models. Although architectures that we deploy in data centers today 
should be able to run in a cloud, simply moving them into a cloud stops 
well short of what one might hope that Cloud Computing will come to 
mean. In fact, tackling global-scaled collaboration and trading partner 

Cloud computing A collection of working papers    2

Demystifying clouds — Exploring 
cloud and service grid architectures

Cloud computing A collection of working papers    2



network problems in government, military, scientific, and business contexts 
will require more than what current architectures can readily support. For 
example:

It will be necessary to rapidly set up a temporary collaboration network 
enabling network members to securely interact online, where interaction 
could imply interoperability with back office systems as well as human-
oriented exchanges — all in a matter of hours. Examples that come to 
mind include emergency medical scenarios, global supply chains and 
other business process networks. Policies defining infrastructure and 
business constraints will be varied, so policy must be external to, and 
must interact with, deployed functionality. These examples also imply the 
need for interoperability between public and private clouds.

Business interactions have the potential to become more complex than 
personal transactions. Because they are likely to be formed as composite 
services, and because services on which they depend may be provisioned 
in multiple clouds, the ability to provision and uniformly manage 
composite cloud services will be required, as will be the ability to ensure 
that these services satisfy specified business policy constraints. 

The way that users and access control are managed in typical 
applications today is no longer flexible enough to express roles and 
responsibilities that people will play in next-generation business 
interactions. Roles will be played by people outside of or across 
corporate boundaries in an online context just as frequently as they are 
inside. Access control and the management of roles and responsibilities 
must be externalized from business functionality so that it becomes 
more feasible to composite functional behavior into distributed service-
oriented applications that can be governed by externalized policy.

These considerations suggest that clouds will have to have at least the 
following characteristicsii:

Clouds should be uniquely identifiable so that they can be individually 
managed even when combined with other clouds. This will be necessary 
to distinguish and harmonize cloud business and infrastructure policies 
in force.

A cloud should be dynamically configurable: configuration should be 
automatable in varying and unpredictable, possibly even event-driven, 
conditions. 

Systems management technologies for clouds must integrate constraints 
on business with constraints on infrastructure to make them manageable 
in aggregate.

 A cloud should be able to dynamically provision itself and optimize its  -
own construction and resource consumption over time.

 A cloud must be able to recover from routine and extraordinary  -
events that might cause some or all of its parts to malfunction. 

 A cloud must be aware of the contexts in which it is used so that  -
cloud contents can behave accordingly. For example, if clouds 
are composited, policy will have to be harmonized across cloud 
boundaries; when in multitenant mode, service level agreements may 
be used to determine priority access to physical resources. Application 
platforms today are unaware of their usage context, but business 
functionality in next-generation platforms will have to be managed 
with context in mind.

 A cloud must be secure, and it must be able to secure itself.

Cloud computing A collection of working papers    3



These coarse-grained characteristics, sometimes described as autonomic computing, can be represented in the form of finer-grained architecture drivers 
that are useful in characterizing steps toward an autonomic computing architecture. Cloud Computing offerings that are available today share many of 
the same drivers that we have organized into Systems and Application Management Drivers in the figure below.
Numbered circles in the graphic above denote drivers that are listed below:

0.  Architecture state: no systems management 
1.  Systems and resources must be identifiable
2.  System and resources must be manageable
3.  Policy-driven secured access to the system and managed resources must 

be provided
4.  System must reallocate managed resources on failures as a function of 

policy
5.  System must reallocate managed resources on various system-level 

conditions by policy
6.  System must be managed lights-out in a single data center context
7.  Systems management capability must scale across clouds of the same 

type 
8.  Systems management capability must scale across clouds of different 

types; these clouds must be managed uniformly while maintaining 
separate cloud identities

9.  System must reallocate managed resources on various system-level 
conditions as a function of policy to accommodate real-time and 
business-oriented usage patterns

10. Systems management policies are harmonized across cloud boundaries
11. It must be possible to integrate management policies of different clouds 

12. Monolithic applications and traditional application integrations exist/are 
sufficient

13. Application platform must be service oriented
14. Applications are replaced with business services
15. Business services have secured access
16. An Interaction Container1 must be used as application container in a 

single-tenant environment
17. Policies must be consolidated and managed using a single (possibly 

federated) policy engine
18. System must reallocate managed business services on various business-

level conditions by policy to accommodate real-time/batch usage 
patterns

19. An Interaction Container must be used as application container in a 
multitenant environment

20. Business service and systems management policies are integrated
21. Architecture state: positioned as an autonomic architecture platform 

for virtual organization-oriented application systems
22. Architecture state: additional structural and business constraints 

positioning architecture platform as a service grid

1 Defined in the next section

Cloud computing A collection of working papers    4



The graphic shows two paths toward autonomic computing that ultimately 
converge at an architecture point that could support business ecosystems 
and emergent and fluid virtual organizations:

The first path, Systems Management Drivers, begins with no systems 
management, and ends with a systems management capability that 
is policy driven, and that enables automated systems management 
in a cloud and harmonization of business and infrastructure policies 
within and across cloud boundaries — in both single- and multi-tenant 
modes. The drivers for systems management are grouped to illustrate 
needs common to basic systems management (Systems Management 
Capabilities), and needs that go beyond basic capabilities (Utility 
Computing Management and Outside-In Architectureiii Capabilities).

The second path, Applications Management Drivers, begins with 
common monolithic corporate applications. It ends with these 
applications having been replaced with service-oriented ones, where 
policy has been externalized so that business policies can be harmonized 
with utility management policies, where it is possible to implement 
end-to-end service level agreements and enforce conformance to 
business and regulatory constraints, and where the use of business 
functional and infrastructural components can be metered and elastically 
load balanced. At this endpoint, business services and infrastructure 
can be organized into a cloud and used in both single- and multitenant 
modes. 

Systems and Applications Management Drivers paths converge at the point 
where it is necessary to manage both the business and the infrastructure 
using common management capabilities, and where related policies must 
be harmonized.

Presenting drivers on paths is sometimes risky, as such suggests a linear 
progression toward implementing an ultimate architecture, or gives 
preference to one suggested architecture vision over another. Neither is 
meant in this case. In fact, one can view how far one traverses each path 
as one of architecture need over a perceived architecture maturity. To 
underscore, we make the following observations relating to commercially 
available cloud computing products:

Cloud computing does not realize the goals of autonomic computing 
as they are defined currently, though combining the characteristics of 
existing clouds gets closer to this goal. This fact does not diminish their 
value for optimizing deployments of applications in place today.

Not every cloud needs to be autonomic — but there are benefits along 
each path regardless. 

 Implementing architecture features on the Applications Management  -
Drivers path will lead to optimizing costs of operating and 
maintaining infrastructure and business functionality that currently 
run a business, and automating systems management, resulting in 
more efficient data center management. 

 Evolving an architecture toward Utility Computing Management  -
and Outside-In Architecture Capabilities will help organizations 
expand their IT systems beyond corporate boundaries. This supports 
implementation of more flexible partner networks and value chains, 
but it also can scale to serve virtual organizations.

Characteristics of an autonomic service architecture

As cloud computing solutions and products are implemented, we believe 
it critical — especially to those being driven by their business needs up 
the Systems and Applications Management Drivers curves — to carefully 
consider their need for support of the architecture characteristics that we 
sketched in the opening part of this paper and that we now elaborate. 

Architecture style

Architecture styles define families of software systems in terms of patterns 
for characterizing how architecture components interact. They define 
what types of architecture components can exist in architectures of those 
styles, and constraints on how they may be combined. They define how 
components may be combined together for deployment. They define how 
units of work are managed, e.g., whether or not they are transactional 
(n-phase commit). And they define how functionality that components 
provision may be composited into higher order functionality, and how such 
can be exposed for use by human beings or other systems.

The Outside-In architectural style is inherently top-down and emphasizes 
decomposition to the functional level, but not lower; is service-
oriented rather than application-oriented; factors out policy as a first-
class architecture component that can be used to govern transparent 
performance of service-related tasks; and emphasizes the ability to adapt 
performance to user/business needs without having to consider the 
intricacies of architecture workings2. 

The counter style, what we call inside-out, is inherently bottom-up 
and takes much more of an infrastructural point of view as a starting 
point, building up to a business functional layer. Application platforms 
constructed using client server, object-oriented, and 2/3/n-tier architecture 
styles are those to which we apply the generalization inside-out because 
they form the basis of enterprise application architectures today, and 
because architectures of these types have limitations that require 
transformation to scale in a massive way vis-à-vis outside-in platforms (see 
Web Services 2.0 for a more detailed discussion of both Outside-In and 
Inside-Out architecture styles).

Implementation of an outside-in architecture results in better architecture 
layering and factoring, and interfaces that become more business than 
data oriented.

2  An outside-in architecture is a kind of service-oriented architecture (SOA) which is fully elaborated in Thomas Erl’s book called “Service-Oriented 
Architecture: Concepts, Technology, and Design,” so we will not discuss SOA in detail in this paper.

Cloud computing A collection of working papers    5



Policy becomes more explicit and is exposed in a way that makes it easier 
to change it as necessary. Service orientation guides the implementation, 
making it more feasible to integrate and interoperate using commodity 
infrastructure rather than using complex and inflexible application 
integration middleware.

As a rule, it is simpler to integrate businesses at functional levels than 
at lower technology layers where implementations might vary widely. 
Hence we emphasize decomposition to the functional level, which often 
is dictated by standards within a market, regulatory constraints on that 
market, or even accounting (AP/AR/GL) practices. 

Architecture style will be critical to orchestrating services and enabling 
operability between thousands of collaborating businesses. The Li & 
Fung Group manages supply chains involving over 10,000 companies 
located in over 40 countries of the world. Point integration solutions 
are infeasible at this scale. Similarly, attempts to integrate hundreds of 
hospital patient management systems and devices into a healthcare cloud, 
replete with HL7 variants and new and legacy applications, would result 
in the same conclusion that interoperability must be realized through the 
implementation of an architecture that integrates at a business functional 
level rather than a data level.

External user and access control management

User and access control management usually is implemented within a 
typical enterprise application. A user is assigned one to many application 
roles, and a role names a set of privileges that correlate to use of particular 
application functionality through a graphical user interface, or through 
some programming interface. User authentication and authorization can 
be integrated with corporate identity management solutions (e.g., single 
sign-on solutions) that are in place to ensure that only people within a 
corporation or corporate partner network are permitted to use corporate 
applications.

But as businesses globalize and couple more fluidly and dynamically, the 
management of users and their assignments to roles and responsibilities/
privileges must be implemented in a scalable fashion that supports 
composition of services into more complex service-oriented behavior. 
Further, it must be possible for role players to transparently change in 
response to business- and partner-related changes made over time, 
especially in business interactions that could be in progress over months to 
years.

A fundamental part of user management is identity management. 
There are numerous identity solutions available today from vendors like 
Microsoft, Sun Microsystems, and Oracle. The challenges facing these 
solution vendors include their ability to manage the varied ways a user 
can be represented in an online context, the means to verify identity 

and detect and manage identity theft, the need to accommodate audits 
of transactions and interactions conducted with a specific identity, and 
so forth. Identity Management is much larger than any single cloud or 
software vendor, and forming a solution for the twenty-first-century is 
even likely to require help from national governmentsiv.

Interaction container

The J2EE/Java EE community introduced the notion of container to the 
enterprise architecture community as a means to streamline the structure 
of thin java clients. Normally, thin-client multitiered applications would 
require code to implement persistence, security, transaction management, 
resource pool management, directory, remote object networking, and 
object life cycle management services. The J2EE architecture introduced 
a container model that made this functionality available — transparently, 
in many cases — to business logic implemented as classes of behavior as 
long as it was implemented to conform to special (e.g., bean) interfaces, 
freeing developers to focus on implementing business functionality and not 
infrastructure — resulting in a standardized use of infrastructure services. 
Containers are hosted in application servers.

As we move toward service orientation, there is need for an analog to an 
application server that not only manages common infrastructure services 
but provides the infrastructure extension points for managing policy that 
is harmonized across technology and business functional stacks within a 
cloud. For the purpose of discussion here, we use the term Interaction 
Server to mean an architecture component that provides runtime services 
used by Interaction Containers (defined below) to manage the life cycle 
of multi-party business service interactions in both single- and multitenant 
contexts. Runtime services can include those similar to application services 
(e.g., like J2EE container services), but also services to manage policy 
(harmonization across architecture layers, policy enforcement, and policy 
exceptions), Interaction life cycle management, and even specialized 
collaboration services (e.g., event-based publish and subscribe capabilities, 
and services that bring together those people who are involved in business 
interactions).

We use the term Interaction to mean a service oriented multiparty business 
collaboration. An interaction can be viewed as an orchestration of business 
services where orchestration flow (not workflow in the typical enterprise 
application integration sense) is managed using externalized policy (please 
see Web Services 2.0 for a more detailed discussion on this topic). An 
Interaction is hosted within an Interaction Container (defined below), and 
orchestrates services provisioned in distributed contexts. Interaction life 
cycle events are used to trigger system behavior and enforce management 
policies and are published by the Interaction Server to subscribers.

Cloud computing A collection of working papers    6



Finally, we use the term Interaction Container as an analog to J2EE/Java EE 
application container. The Interaction Container is hosted in an Interaction 
Server, statically and dynamically configured to provide infrastructure 
and policy adjudication services that are specific to a business user’s 
environment, integrated with systems management capabilities, and used 
to manage one-to-many Interactions and their life cycles. An Interaction 
Container essentially holds an execution context in which role players — 
people or systems participating in an Interaction and conforming to 
specific roles (interfaces) — interact to perform their parts in a business 
orchestration and manage exceptions and/or faults should they occur in 
the process. 

An Interaction Container can be considered to be organizationally based 
(i.e., it can be used to manage many Interactions between a set of 
participants/role players over time), or outcome-based (in which only one 
Interaction would be performed). These two usage scenarios reflect the 
need to manage Interactions in a dynamic user community, where role 
players could change over time, and the need to manage an Interaction as 
a single possibly long-running business transaction.

Externalized policy management/policy engine

A Policy Engine harmonizes and adjudicates conflicting policies used across 
architecture layers. Components at all architecture layers can participate in 
policy harmonization and enforcement, which requires the following:

Policy extension points must be exposed and formally declared in any 
part of the architecture that must be managed. 

Policy management must support policy pushdown to enable extensible 
and dynamic detection of policy violation and policy enforcement.

It must be possible to version policy so that policy decisions made at a 
given time can be reproduced.

Policy exceptions should be managed in as automated a fashion 
as possible, but support also must be given to cases where human 
judgment and decision making may be required. Note that fault or 
exception can connote both system-level occurrences and domain 
evolution in which policy constraints valid in the past become invalid. For 
example:

 Inability to connect to a database is a system fault that should be  -
automatically handled as a software system exception.

 A regulatory constraint that permitted conduct of business in one way  -
to a certain point in time, but that no longer does due to changes 
in law, is a business exception that may require human judgment to 
determine if completion of a business transaction according to old 
law should be permitted.

Policy embedded in application functionality is not easy to change, but 
future software systems will have to be implemented in a way that views 
change as the norm — where change results from the emergence of new 
markets, market evolution, changes in regulations and standards, fixing of 
policy bugs, the whims of interaction participants, and maybe even their 
customers’ whims. 

Cloud computing A collection of working papers    7



Externalizing policy highlights a significant distinction between Inside-Out 
and Outside-In architecture styles. Inside-Out architectures usually involve 
legacy applications in which policy is embedded and thus externalizing it 
is — at best — very difficult. Where application policies differ in typical 
corporate environments, it becomes the responsibility of integration 
middleware to implement policy adjudication logic that may work well to 
harmonize policies over small numbers of integrated systems, but this will 
not generalize to manage policy in larger numbers of applications as would 
be the case in larger value chains. The red rectangle in the figure below 
identifies where an Inside-Out architecture must transform (and simplify in 
the process) to become an Outside-In architecture, making it more feasible 
to externalize policy and progress toward the fully autonomic computing 

endpoint. Within certain communities, we refer to this transformation 
as an architectural Laplace Transform, noted in the graphic below near 
points 16 and 17, which helps in solving challenging structural problems 
by creating an alternative frame or point of view. But it actually represents 
a fundamental change of mental models that requires shifting from an 
inside the enterprise (Inside-Out) point of view to an external, distributed 
business process network (Outside-In) point of view that considers the 
world with the granularity inherent in the business process network3. 
This results in factoring out policy components such that the resulting 
architecture better accommodates the policy requirements of very large 
numbers of users in a variety of combinations. 

3  Perhaps the irony of taking an Outside-In point of view is that it results in an internal IT system which provides a unified policy-based framework for 
interoperability across multiple lines of business, whether internal or external.

Cloud computing A collection of working papers    8



What is policy?

The word policy could have a number of meanings as it is used in 
conjunction with IT architecture and systems. For example, it could 
mean governance relating to software architecture development and 
implementation; or it could mean operational rules and standards for 
administering a deployed production system. 

Our use of the word connotes constraints placed upon the business 
functionality of a business system, harmonized with constraints on the 
infrastructure (hardware and software) that provisions that functionality. 
These constraints could include accounting rules that businesses follow, 
role-based access control on business functionality, corporate policy about 
the maximum allowable hotel room rate that a nonexecutive employee 
could purchase when using an online reservation service, rules about 
peak business traffic that determine when a new virtualized image of an 
application system should be deployed, and the various infrastructural 
policies that might give customer A preference over customer B should 
critical resource contention require such.

Policy extension points enable the means by which policy requirements are 
harmonized between interaction containers and the cloud environment 
itself 4. They are not configuration points that are usually known in 
advance of when an application execution starts and that stay constant 
until the application restarts. Rather, policy extension points are dynamic 
and late bound to business and infrastructural functionality, and they 
provide the means to dynamically shape execution of this functionality. 
The sense of the word shape is consistent with how policy is applied in the 
telecom world where, for example, bandwidth might be made available 
to users during particular times in the day as a function of total number 
of users present. Just as policy is used in the telecom world to shape use 
of critical resources, policy can be used to shape execution of business 
functionality. 

For example, suppose that an interaction between business partners is 
started by a partner located in a European country that legally requires 
all interaction data to remain in that country, whereas this same type of 
data could be stored anywhere that the deployment platform determines 
convenient otherwise. A policy extension point on storage could be 
exposed to ensure that storage systems located in the appropriate 
European country are used when required. Because policy is externalized 
as described above, this policy does not imply the need for multiple code 
bases to realize this constraint.

The example above is a simple one that one could imagine implementing 
at the application business layer of an enterprise architecture. Suppose, 
however, that this type of policy is moved from the business layer into 
the network. From 2005 to date, we have seen the emergence of XML 
accelerators (e.g., IBM/Data Power, Intel, Layer 7 Technologies) that 

make such possible by bringing to application protocol management 
what network protocol analyzers, or sniffers, bring to network protocol 
management. These accelerators are able to inspect, transform, and route 
both XML and binary data in ways that are conscious of ecosystem and 
interaction constraints, e.g., constraints like the European storage rule 
above. Once equipment like this is aware of the business data and the 
workflow context in which it is communicated, it can carry out networking 
functions such as forwarding, security, usage analysis, traffic management, 
and billing, in a much more sophisticated manner in comparison to 
traditional networking techniques — and it can do this taking into account 
policy constraints across an entire technology stack.

Utility computing 

The raison d’être of autonomic computing is the need to address the 
growing complexity of IT systems. While loosely coupling architecture 
components makes them less brittle, it also exposes more moving parts 
that also must have management and configuration extension points. The 
authors of The Vision of Autonomic Computing worded their concerns 
over complexity as follows:

“As systems become more interconnected and diverse, architects are less 
able to anticipate and design interactions among components, leaving 
such issues to be dealt with at runtime. Soon systems will become too 
massive and complex for even the most skilled system integrators to install, 
configure, optimize, maintain, and merge. And there will be no way to 
make timely, decisive responses to the rapid stream of changing and 
conflicting demands.”

Externalization of policy goes a long way toward making it possible to 
composite clouds and manage policy compliance. But the structure of the 
cloud also must be addressed if we expect to manageably scale a cloud. 
An autonomic computing architecture calls for architecture components 
to, themselves, be autonomic. This might sound a bit far-fetched unless 
we consider that we have been solving heterogeneity problems with 
abstraction layers at the operating system layer for some years now, and 
that this technique can be used again to manage large collections of 
computing resources uniformly. In particular, if two clouds are autonomic 
and essentially support the same management interfaces, then they could 
be composited into a larger cloud while preserving the identities of the 
original clouds. Intuitively, this simplifies scaling clouds and reconciling 
policy differences.

As we see the emergence of Cloud Computing products into the market, 
we see (at least) two that appear to recognize the need to composite 
clouds, grids, or meshes of manageable computing resources. Some cloud 
infrastructure vendors have taken an approach in which they intend to 
deal directly with architecture components through a software abstraction 
layer. One approach taken to manage clouds is to provide a management 

4  Policy extension points provide the way for applications and services within a container to communicate to the cloud’s centralized or federated Policy Engine.

Cloud computing A collection of working papers    9



interface to which all manageable resources, including the cloud itself, 
conform so that management over heterogeneous infrastructure 
is uniform. For example, the approach that Microsoft has taken 
acknowledges a need for a uniform management abstraction layer, which 
it achieves by requiring that the set of manageable resources conform to 
interfaces in the .NET Framework. In either case, exposing a cloud and 
its components through a well defined management interface enables 
management policies to be applied even to the contents of containers 
like the interaction container discussed earlier, making it possible to 
harmonize policies and deliver information in context across business and 
infrastructure layers.

This is in contrast to elastic computing strategies that are virtualization-
based, in which the contents of virtual images are not directly manageable 
by the elastic computing infrastructure. Amazon, with its CloudWatch 
management dashboard and APIs, provide the ability to manage 
EC2-based systems using standard systems management metrics. 
Systems management functionality layered on top of EC2 management 
could correlate business resources to system resources through systems 
metrics, though the correlation is made outside of CloudWatch. Recent 
partnerships between IBM and Amazon allow for containers filled with IBM 
infrastructure to be managed using Tivoli or similar systems management 
functionality. However, even in this case, it is important to note that 
management of what is in the container is distinct from management 
of Amazon’s cloud unless an integration between the two is ultimately 
implemented. We have referred earlier in this paper to the mechanism 
permitting contents of a container to participate in cloud management 
as policy extension points. In practice, policy extension points implement 
a management interface that makes the resources with which they are 
associated manageable and makes it possible for these resources to 
participate in cloud management.

Cloud composition

The ability of one cloud to participate in managing another will become 
critical to scaling a cloud. It will provide a means for a private cloud 
to temporarily use the resources of a public cloud as part of an elastic 
resource capacity strategy. It also will make it possible to more immediately 
share functionality, information, and computing resources. 

One real-life example of a composite cloud is Skype. While Skype may 
be considered to be just a p2p application, it actually is a global mesh 
network of managed network elements (servers, routers, switches, 
encoders/decoders, etc.) that provisions a global VoIP network with voice 
endpoints that are laptop/desktop computers or handheld devices that run 
Skype’s client application at the edge of the Skype cloud. When the Skype 
application is not running on a laptop/desktop/handheld device, VoIP 
calls are not conducted through it. But when the application is running 
and calls can be conducted, the Skype cloud expands to use the laptop/

desktop/handheld device to route traffic and manage network exceptions 
if needed. 

A second real life example is FortiusOne’s GeoCommons (http://www.
FortiusOne.com, http://www.geocommons.com). FortiusOne is developing 
a next-generation location intelligence platform by blending analysis 
capabilities of geographic information systems (GIS) with location-
based information on the Web. FortiusOne’s premise is that it can help 
organizations make better location-sensitive decisions by simplifying how 
business information is correlated to visual maps. The technology and data 
that make up the FortiusOne platform is a combination of open source 
technology and data that it licenses to complement what it can get from 
the public domain.

Two applications are made available at GeoCommons: Finder! is an 
application used to find, organize, and share geodata; and Maker! is an 
application used to create maps using GeoCommons and personal data. A 
simple use case involving both of these tools is the upload of a named data 
set into Finder! that can be linked through postal code, longitude/latitude, 
or some other location hook to a map, and the subsequent use of Maker! 
to produce a rendering of a map with the named data set superimposed 
onto it. 

FortiusOne has implemented its functionality both as Web applications 
and services (with a Web service programming interface). It makes this 
functionality available in its own cloud, which is very similar to Amazon’s 
Elastic Compute Cloud core. 

GeoCommons makes its software-as-a-service platform available through 
a subscription, with pricing determined by number of reports generated, 
data set size, and data storage requirements.

For those who wish to operate in a more secure yet managed enterprise 
context, GeoCommons can be privately hosted for a customer. This 
version of the platform includes an expanded data set and data 
integration services.

And for those wishing the ultimate in data privacy who simply do not 
trust on-line secure environments, FortiusOne packages its GeoCommons 
functionality and supporting data on a linux appliance and updates data 
and functionality periodically as required.

The potential for two types of cloud composition can be seen in the 
FortiusOne offerings. First, Amazon’s Elastic Computing offering can be 
used should FortiusOne require additional resources beyond its current 
capacity. Second, the GeoCommons is accessible via a Web service 
programming interface, which makes it possible to invoke the services 
provisioned in the FortiusOne cloud from another cloud. Invoking services 
of one cloud by another does not require cloud composition, but a need to 
manage multiple clouds with the same policy set could. 

Cloud computing A collection of working papers    10



With these examples in mind, we characterize Utility Computing as follows:

An OS management layer that transforms hosted resources in a data 
center into a policy-managed cloud, extensible beyond data center 
boundaries.

 It sits over (possibly components physically run on) production  -
hardware.

It enables clouds conforming to the same cloud management interface 
to be composited while maintaining cloud identity.

It knows and manages all resources in a cloud (recursively, as dictated by 
policy).

It reallocates (in an autonomic sense) resources in a cloud, as permitted 
by policy, to accommodate real-time and business-oriented usage 
patterns.

It meters use of all resources managed within a cloud.

It provides security and access control that can federate across cloud 
boundaries.

It participates in adjudication of policy collisions across all cloud 
architecture layers where appropriate.

Utility computing can be considered an overlay on a cloud to make it 
and its elements manageable and compositional. Preservation of cloud 
identity also is a nod toward the ability to federate clouds, which has been 
elaborated in Service Grid: The Missing Link in Web Services, together with 
early thinking of the foundational nature of service grids vis-à-vis business 
computing ecosystemsv. 

Service grid — the benefit after the autonomic endpoint

Before the term cloud, the term service grid was sometimes used to define 
a managed distributed computing platform that can be used for business 
as well as scientific applications. Said slightly differently, a service grid is a 
manageable ecosystem of specific services deployed by service businesses 
or utility companies. Service grids have been likened to a power or utility 
grid: always on, highly reliable, a platform for making managed services 
available to some user constituency. When the term came into use in the 
IT domain, the word service was implied to mean Web service, and service 
grid was viewed as an infrastructure platform on which an ecology of 
services could be composed, deployed, and managed. 

The phrase service grid implies structure. While grid elements — servers 
together with functionality they host within a service grid — may be 
heterogeneous vis-à-vis their construction and implementation, their 
presence within a service grid implies manageability as part of the grid 
as a whole. This implies that a capability exists to manage grid elements 
using policy that is external to implementations of services in a service grid 
(at the minimum in conjunction with policy that might be embedded in 
legacy service implementations). And services in a grid become candidates 
for reuse through service composition; services outside of a grid also are 
candidates for composition, but the service grid only can manage services 
within its scope of control. Of course, service grids defined as we have 
above are autonomic, can be recursively structured, and can collaborate in 
their management of composite services provisioned across different grids.

Service grid deployment architecture

Cloud computing A collection of working papers    11



A cloud, as defined by the cloud taxonomy noted earlier, is not necessarily 
a service grid. There is nothing in cloud definitions that require all services 
hosted in them to be managed in a predetermined way. There is no 
policy engine required in a cloud that is responsible to harmonize policy 
across infrastructure and business layers within or across its boundaries, 
though increased attention is being given to policy-driven infrastructure 
management. Clouds are not formed with registries or other infrastructure 
necessary to support service composition and governance. 

A service grid can be formed as an autonomic cloud and will place 
additional constraints on cloud structure (e.g., external policy 
management, interaction container-supported composition, a common 
management interface, support of specific interface standards). These 
standards will be necessary to manage a service grid both as a technology 
and a business platform. 

Container permeability

Clouds and service grids both have containers. In clouds, container is used 
to mean a virtualized image containing technology and application stacks. 
The container might hold other kinds of containers (e.g., a J2EE/Java EE 
application container), but the cloud container is impermeable, which 
means that the cloud does not directly manage container contents, and 
the cloud contents do not participate in cloud or container management. 
In a service grid, container is the means by which the grid provides 
underlying infrastructural services, including security, persistence, business 
transaction or interaction life cycle management, and policy management. 
In a service grid, it is possible for contents in a container to participate 
in grid management as a function of infrastructure management policies 
harmonized with business policies like service level agreements. It also is 
possible that policy external to container contents can shape5 how the 
container’s functionality executes. So a service grid container’s wall is 
permeable vis-à-vis policy, which is a critical distinction between clouds 
and service grids6.

Cloud vendors and vendor lock-in

Vendor lock-in is a concern that will grow as cloud computing becomes 
more prevalent. Lock-in is best addressed by the implementation of 
and compliance to standards. In particular, standards for security, 

interoperability, service composition, cloud and service grid composition, 
management and governance, and auditing will become especially critical 
as clouds become embedded into the way that corporations conduct 
business7. 

Standards for cloud management are emerging as vendors like Microsoft, 
Google and Amazon make their offerings available for use. The Web 
Services community has developed a set of standards for Web service 
security, Web service management, and Web service policy management, 
and so forth, that can serve as a basis for standards to be supported in 
cloud computing. And software vendors8 are implementing Web service 
management platforms based on such standards that provide the means 
to define service level agreements that, when integrated with Web service 
and supporting infrastructure, govern end-to-end Web service-based 
interactions, ensure qualities of service, throttle Web service use to ensure 
performance minimums, etc. 

With all this said, however, the fact is that comprehensive standards for 
cloud computing do not yet exist, since cloud computing is nascent. 
And until (and probably even after) such standards exist, cloud users 
should expect to see features and capabilities that justify lock-in — just 
as one does with other software and utility platforms. Externalizing policy 
(discussed later in this paper) and implementing services from an outside-in 
perspective will result in getting benefits from clouds while ameliorating at 
least some of the aspects of vendor lock-in through loose couplings and 
manageable interfaces. 

Virtual organizations and cloud computing

Social networks are examples of platforms that use a somewhat 
amorphous definition of organization similar to a virtual organization, 
which is defined by the National Science Foundation as “a group of 
individuals whose members and resources may be dispersed geographically 
and institutionally, but who function as a coherent unit through the use of 
cyberinfrastructure.”vi Virtual organizations can form in a variety of ways, 
usually as a function of roles/responsibilities played in interactions and less 
as a function of title or position in an organization. Roles/responsibilities 
represent interfaces that have interaction scope and can be used to 
automate computing and exception handling. 

5  The sense of the word shape is consistent with how policy is applied in the telecom world where, for example, bandwidth might be made available 
to users during particular times in the day as a function of total number of users present.

6 Cloud management typically is exposed by the cloud vendor through a dashboard. Vendors like Amazon also make functionality underlying the 
dashboard available as Web services such that cloud users’ functionality could programmatically adjust resources based on some internal policy. A 
service grid is constructed to actively manage itself as a utility of pooled resources and functionality for all grid users. Hence, a service grid will require 
interaction with functionality throughout the grid and determine with the use of policy extension points whether resource supply should be adjusted.

7  Note the absence of portability in this list. Interoperability is far more important than portability, which more often leads to senseless technology 
wars. It is unlikely to be possible to port applications from one cloud to another if these applications make use of cloud APIs. Since clouds are not 
standard as yet, neither will the APIs be for some time. However, making policy explicit, and providing APIs in the noted areas will go a long way 
toward enabling interactions to be orchestrated across cloud and service grid boundaries.

8  See AmberPoint and SOA Software as two examples of Web service management platform vendors.

Cloud computing A collection of working papers    12



A virtual organization’s use of cloud services could vary widely:

A virtual organization might be a startup company that uses an 
infrastructure cloud to deploy its computing services because the 
economic model is right — a pay-for-use model is what it can afford as 
it gets off the ground, and maybe even throughout its entire corporate 
existence. This type of organization may be interested in the elastic 
resources of a cloud, but may not need more advanced capabilities.

A network of thousands of supply chain partners could be considered 
to be a virtual organization. It could use a business interaction server 
hosted in a cloud that manages interactions, ensuring they conform to 
legal and contract policies and giving all participants in an interaction 
a record of their participation when that interaction completes. This 
virtual organization might need the full range of autonomic computing 
capabilities to manage the complexity of interoperating with many 
partner systems and accommodating policy differences.

A network of hundreds of thousands of corporate clients that use travel 
and entertainment services that comply with corporate standards — all 
hosted in a cloud — could be considered a virtual organization. One can 
imagine transaction consolidations and other clearinghouse functions 
that are part of this small ecosystem. Interactions might be complex and 
somewhat long-lived and guided by business policies, though the roles/
responsibilities played are likely to be simple. 

 Rearden Commerce (http://www.reardencommerce.com/) implements  -
just such a platform that (as of Jan 2009) serves over 4000 corporate 
clients and 2 million users (client customers). It brings together 
corporate business travel policies, reviews of travel/entertainment 
service providers, expense processing and reporting, etc., in a way 
that recognizes life of a traveler and makes it easier by eliminating 
the need to build direct point-to-point traveler to service provider 
relationships.

A virtual organization could be composed of scientists who collaborate 
from their labs across the globe in compute- and data-intensive 
interactions hosted in a cloud. These organizations typically are not large, 
but their work requires access to an elastic set of compute resources for 
hours at a time, and the capability to manipulate huge databases. 

And we could consider a healthcare context as an example of an 
ecosystem of virtual organizations that scales to be even larger than the 
user bases of popular social network platforms. Members might include 
healthcare providers whose credentials must be tracked. Patients must 
be able to access their health records securely, and authorize access to 
portions of their charts to others. Healthcare devices and applications or 
service functionality emit HL7 message streams and related events that 
result in updating patient charts, informing care providers of procedure 
results, communicating billing information to hospital billing systems 
and insurance providers, measuring quality of care, and keeping each 
member of a care provider group informed of all activities and the 

corresponding outcomes that occur while they care for a patient who 
might be physically located in another country.

 HL7 application messaging protocols are evolving from being ASCII/ -
special character delimited protocols (v2.x) to being XML-based 
(v3.x). From a technology point of view, HL7’s evolution to XML is 
very complementary to Web service orientation, though it does not 
force standardization of HL7 messages as yet; we hope that it will 
bring about standardization as v3.x becomes more widely adopted. 
Use of XML (and XSLT) also complements a strategy to enrich data 
passed in messages in a more standard (data extension point) fashion, 
making it possible for participants in multiparty interactions to pass 
information that they care about (but maybe no other participant 
does) along with standard information useful to all participants in the 
interaction. Further, because XML structure can be made very explicit, 
enforcement of business policies is more easily enabled.

Cloud computing must (and in some cases already does) address technical 
challenges to accommodate these organizational forms, including the 
following:

The number of machines in a cloud serving hundreds of millions of users 
can reach tens of thousands of machines physically distributed across 
multiple data centers, where it also may be necessary for data center 
capacity to spill over to still other data centers. Failed servers in such a 
large-scale environment have to be discoverable and cannot impact the 
capabilities of the Cloud in aggregate; failed cloud components must be 
adopted as the norm and not the exception. 

Failed computers have to be replaced (virtually) by others that are waiting 
in inventory for automatic configuration and deployment. 

Storage models will have to be reconsidered, since it may be expedient 
to use massively distributed storage schemes in addition to the 
centralized relational and hierarchical models now in use. We are seeing 
the beginnings of such with Microsoft’s and Amazon’s offerings (using 
Hadoop-like storage models), and the Google File System. “Backup and 
Recovery” takes on new meanings with distributed file systems. Storage 
fault tolerance likely will be implemented differently in large clouds than 
in smaller enterprise clouds. 

Security management systems might have to be federated. Access 
control schemes will have to accommodate global user bases securing 
service methods throughout the cloud. There also are global constraints 
to be considered: some countries do not wish data relating to their 
citizens to be hosted outside of their national boundaries. 

We often think of network traffic attributed to systems management 
to be small in comparison to the traffic generated by user interactions 
with hosted business functionality. Management of clouds and their 
components, especially clouds containing business functionality 
managed with externalized business and infrastructure policies, may have 

Cloud computing A collection of working papers    13



to be federated as a function of the size of the cloud to manage a more 
appreciable amount of management-related network traffic. 

Complete testing will be difficult to impossible to perform in a very large 
and dynamic cloud context, so it is likely that new test methods and 
tools will be required.

The range of cloud-related virtual organization use cases noted above 
leverage the cloud computing instantiations we see in the market, and 
makes clear that the demand is imminent for cloud computing to serve 
as the infrastructure and utility service grid for a user constituency that 
is much larger and varied than we’ve seen to date. We see the first signs 
of such in social networking platforms and the success that they enjoy as 
measured by number of users. It will be only a matter of time when we 
see that business interactions will be conducted in business network group 
contexts where business policy, roles, responsibilities, and functionality 
converge in a new type of cloud architecture.

Concluding remarks

Autonomic computing, though viewed with suspicion or disbelief in the 
past years, can be sensibly applied to Cloud Computing in a way that will 
be useful when developing cloud architectures capable of sustaining and 
supporting ecosystem-scaled platforms. We suspect that this will become 
the norm as adoption of cloud computing increases and as social network 
platforms transition to include business capabilities.

Cloud computing as we see it emerging today is somewhat amorphously 
defined, making it difficult to form a point of view about the capabilities 
of currently available cloud computing instances to manage next-
century platforms. While it is clear that they can manage today’s 
common platforms, we see architectural challenges for the future that 
we believe will be difficult to address using current cloud architectures 
and architecture styles. We identify technical challenges — including 
architecture style, user and access control management, the need to have 
externally managed business and infrastructure policies through interaction 
containers, and the need for Utility Computing capabilities — that must be 
addressed to meet future architecture requirements.

Aiming at implementation of an ecosystem platform will take us 
beyond the management capabilities of current cloud offerings. Adding 
architecture components like the interaction container and externalized 
policy engine will improve cloud capabilities, but until these become 
fundamental components in cloud architecture, it is unlikely that a cloud 
will be able to manage the concerns of a service grid. It is interesting to 
note, however, that the construct of a service grid enables it to manage 
the concerns of a cloud. A service grid, as an autonomic architecture 

that is hardened to be both a service-oriented technology platform and a 
business platform, can be expected to scale both downward to support 
enterprise architectures and upward and outward to support the types of 
architectures likely to be pervasive in twenty-first-century computing.

Healthcare represents an area where we believe service grid computing 
and next-generation architectures will prove to be invaluable. Healthcare 
systems world-wide are difficult to manage and architecturally extend, 
and they certainly are difficult to integrate. Unifying information across 
healthcare facility boundaries is not only an informatics problem, but also 
an architecture problem that, if not addressed, will likely hinder national 
healthcare agendas in the United States and elsewhere9. We will discuss 
a service grid-enabled healthcare platform architecture in detail in a 
subsequent paper. 

9  One of the first efforts of which we are aware to solve access control/role-responsibility problems in healthcare systems as these relate to management 
of biomedical information in a service grid is being conducted by Dr. Carl Kesselman and Dr. Stephan Erberich at ISI/USC’s Medical Information Systems 
division. Without doubt, ISI’s work will be critical to the implementation of service grid-based next-generation healthcare systems.

Cloud computing A collection of working papers    14



Cloud computing A collection of working papers    15

Moving information technology 
platforms to the clouds — Insights into 
IT platform architecture transformation
Introduction

The Long-Term Credit Bank (LTCB) of Japan underwent a very traumatic 
reorganization beginning in 1998 following Japan’s economic collapse in 
1989. The bank was beset with difficulties rooted in bad debts. Possible 
mergers with domestic banks were proposed, but the bank eventually was 
sold to an international group, which set about putting the bank back 
together, launching it in June 2000 as Shinsei Bank, Limited (Shinsei). 

LTCB’s IT infrastructure was mainframe based, as many banks’ 
infrastructure was at the time (and still is). Acquisitions and organic growth 
resulted in a variety of different systems supporting similar bank card 
products. Among the many challenges with which the bank had to grapple 
as it began its new life was IT infrastructure consolidation, which, in part, 
translated into deciding how to consolidate bank card products and their 
supporting IT systems without further disruption to its bank clientele. The 
bank could have issued a new card representing bank card features and 
benefits of its individual products consolidated into a single one, but this 
would have violated the constraint to not further disrupt its client base, 
risking loss of more clients. Or it could have continued to accept the entire 
bank card products as it had in the past but, at the same time, find a way 
to transparently consolidate systems and applications supporting these 
cards into a very reduced set of systems — ideally one system — that 
would enable the retirement of many others. 

In sum, Shinsei took this second path. Conceptually, and using IT 
terminology, the bank viewed its various card products as business 
interfaces to Shinsei that it had to continue to support until a card type 
no longer had any users, after which the product (the card type) could be 
retired. Further, to effect consolidation, the bank had to implement an IT 
application platform supporting both its future and its legacy. The bank 
IT group set about this mission, empowered by the freedom its business 
interfaces provided, and, over the next three to five years, replaced 
many (potentially all) of its mainframe legacy systems using applications 
constructed with modern technologies and hosted on commodity 
hardware and operating systems.

Shinsei’s example is a direct analog to what IT teams in corporations today 
must do to transform legacy/existing Inside-Out application platforms into 
Outside-In service oriented ones that effectively leverage the capabilities 
that are afforded through use of cloud and service grid technologies. 
We begin this paper with a very brief explanation of Outside-In versus 
Inside-Out architecture styles, clouds, and service grids. Then we explore 
strategies for implementing architecture transformations from Inside-Out 
to Outside-In and issues likely to be encountered in the process.

Going-forward assumptions and disclaimers

Globalization, economic crises, technology innovations, and many other 
factors are making it imperative for businesses to evolve away from current 
core capabilities toward new cores. Further, there appear to be indicators 
that these businesses — if they are to participate in twenty-first-century 
business ecosystems for more than just a few years — will have to make 
more core transitions during their corporate life than their twentieth-
century counterparts, so the capability to leverage technology to efficiently 
transform is important to corporate survival. 

We believe that clouds, service grids, and service oriented architectures 
having an Outside-In architecture style are technologies that will be 
fundamental to successfully making such corporate transformations. There 
are near-term objectives, like the need for cost and resource efficiency or IT 
application portfolio management that justify use of these technologies to 
re-architect and modernize IT platforms and optimize the way corporations 
currently deploy them. But there are longer-term business imperatives as 
well, like the need for a company to be agile in combining their capabilities 
with those of their partners by creating a distributed platform, and it is at 
these corporations we specifically target this paper. 

Outside-in and inside-out architecture styles

Architecture styles define families of software systems in terms of patterns 
for characterizing how architecture components interact. They define 
what types of architecture components can exist in architectures of those 
styles, and constraints on how they may be combined. They define how 
components may be combined together for deployment. They define how 
units of work are managed, e.g., whether they are transactional (n-phase 
commit). And they define how functionality that components provision 
may be composited into higher order functionality and how such can be 
exposed for use by human beings or other systems.

The Outside-In architectural style is inherently top-down and emphasizes 
decomposition to the functional level but not lower, is service-oriented 
rather than application-oriented; factors out policy as a first-class 
architecture component that can be used to govern transparent 
performance of service-related tasks; and emphasizes the ability to adapt 
performance to user/business needs without having to consider the 
intricacies of architecture workings1. 

The counter style, what we call Inside-Out, is inherently bottom-up 
and takes much more of an infrastructural point of view as a starting 
point, building up to a business functional layer. Application platforms 
constructed using client server, object-oriented, and 2/3/n-tier architecture 

1  An Outside-In architecture is a kind of service-oriented architecture (SOA) which is fully elaborated in Thomas Erl’s book called “Service-Oriented 
Architecture: Concepts, Technology, and Design,” so we will not discuss SOA in detail in this paper.



Cloud computing A collection of working papers    16

styles are those to which we apply the generalization Inside-Out because 
they form the basis of enterprise application architectures today, and 
because architectures of these types have limitations that require 
transformation to scale in a massive way vis-à-vis Outside-In platforms.

Implementation of an Outside-In architecture results in better architecture 
layering and factoring, and interfaces that become more business than 
data oriented. Policy becomes more explicit, and is exposed in a way that 
makes it easier to change it as necessary. Service orientation guides the 
implementation, making it more feasible to integrate and interoperate 
using commodity infrastructure rather than using complex and inflexible 
application integration middleware.

As a rule, it is simpler to integrate businesses at functional levels than 
at lower technology layers where implementations might vary widely. 
Hence we emphasize decomposition to the functional level, which often 
is dictated by standards within a market, regulatory constraints on that 
market, or even accounting (AP/AR/GL) practices. 

For a much more detailed discussion of Outside-In versus Inside-Out 
architecture styles, please see the working paper we call “Web Services 
2.0”vii.

Clouds and service grids

Since a widely accepted industry definition of cloud computing — beyond 
a relationship to the Internet and Internet technologies — does not exist at 
present, we see the term used to mean hosting of hardware in an external 
data center (sometimes called infrastructure as a service), utility computing 
(which packages computing resources so they can be used as a utility in 
an always on, metered, and elastically scalable way), platform services 
(sometimes called middleware as a service), and application hosting 
(sometimes called software or applications as a service). 

The potential of cloud computing is not limited to hosting applications in 
someone else’s data center, though cloud offerings can be used in this way 
to elastically manage computing resources and circumvent the need to buy 
new infrastructure, train new people, or pay for resources that might only 
be used periodically. Special file system, persistence, data indexing/search, 
payment processing, and other cloud services can provide benefits to those 
who deploy platforms in clouds, but their use often requires modifications 
to platform functionality so that it interoperates with these services.

Before the term cloud, the term service grid was sometimes used to define 
a managed distributed computing platform that can be used for business 
as well as scientific applications. Said slightly differently, a service grid is a 
manageable ecosystem of specific services deployed by service businesses 
or utility companies. Service grids have been likened to a power or utility 
grid … always on, highly reliable, a platform for making managed services 
available to some user constituency. When the term came into use in the 
IT domain, the word service was implied to mean Web service, and service 
grid was viewed as an infrastructure platform on which an ecology of 
services could be composed, deployed, and managed. 

The phrase service grid implies structure. While grid elements, servers 
together with functionality they host within a service grid, may be 
heterogeneous vis-à-vis their construction and implementation, their 
presence within a service grid implies manageability as part of the grid 
as a whole. This implies that a capability exists to manage grid elements 
using policy that is external to implementations of services in a service grid 
(at the minimum in conjunction with policy that might be embedded in 
legacy service implementations). And services in a grid become candidates 
for reuse through service composition; services outside of a grid also are 
candidates for composition, but the service grid only can manage services 
within its scope of control. Of course, service grids defined as we have 
above are autonomic, can be recursively structured, and can collaborate in 
their management of composite services provisioned across different grids. 

Clouds and service grids both have containers. In clouds, container is used 
to mean a virtualized image containing technology and application stacks. 
The container might hold other kinds of containers (e.g., a J2EE/Java EE 
application container), but the cloud container is impermeable, which 
means that the cloud does not directly manage container contents, and 
the cloud contents do not participate in cloud or container management. 
In a service grid, container is the means by which the grid provides 
underlying infrastructural services, including security, persistence, business 
transaction or interaction life cycle management, and policy management. 
In a service grid, it is possible for contents in a container to participate 
in grid management as a function of infrastructure management policies 
harmonized with business policies like service level agreements. It also is 
possible that policy external to container contents can shape2 how the 
container’s functionality executes. So a service grid container’s wall is 
permeable vis-à-vis policy, which is a critical distinction between clouds 
and service grids3.

2  The sense of the word shape is consistent with how policy is applied in the telecom world where, for example, bandwidth might be made available 
to users during particular times in the day as a function of total number of users present.

3  Cloud management typically is exposed by the cloud vendor through a dashboard. Vendors like Amazon also make functionality underlying the 
dashboard available as Web services such that cloud users’ functionality could programmatically adjust resources based on some internal policy. A 
service grid is constructed to actively manage itself as a utility of pooled resources and functionality for all grid users. Hence, a service grid will require 
interaction with functionality throughout the grid and determine with the use of policy extension points whether resource supply should be adjusted.



Cloud computing A collection of working papers    17

A cloud, as defined by the cloud taxonomy noted earlier, is not necessarily 
a service grid. There is nothing in cloud definitions that require all services 
hosted in them to be manageable in a consistent and predetermined 
way4. There is no policy engine required in a cloud that is responsible to 
harmonize policy across infrastructure and business layers within or across 
its boundaries, though increased attention is being given software vendors 
to policy-driven infrastructure management. Clouds are not formed with 
registries or other infrastructure necessary to support service composition 
and governance. 

However, a service grid can be formed by implementing a cloud 
architecture, adding constraints on cloud structure, and adding constraints 
on business and infrastructure architecture layers so that the result can be 
managed as both a technology and a business platform. 

For a much more detailed discussion of architectures in clouds and 
service grids, please see the working paper we call “Demystifying Clouds: 
Exploring Cloud and Service Grid Architectures”viii.

Architecture transformation

How to construct an Outside-In architecture that meets next century 
computing requirements is a topic that requires debate. Should we 
leverage our past investments in infrastructure, bespoke software 
development, and third party software products? If so, how can we 
self-fund this and how long will it take? Or do we go back to the IT 
funding well with rationale that defends our need now to develop a new 
service platform and jettison that multimillion-dollar investment we just 
barely finished paying off?

The answer is it depends. We’ve seen both approaches taken. And we’ve 
seen that development of a new platform is no longer as drastic as it 
sounds.

Transforming an existing architecture

It is enticing to think that one could implement an Outside-In architecture 
simply by wrapping an existing Inside-Out application platform with Web 
service technologies to service-enable it. 

Not quite.

It is possible to do that and then evolve the Inside-Out architecture to an 
Outside-In one as budget and other resources allow using a strategy very 
similar to Shinsei’s business interface strategy discussed in the introduction 
of this paper. But the fact that an Inside-Out architecture typically is not 
service-oriented — even though it might be possible to access application 
functionality using Web services — suggests that just using the wrapper 

strategy will not yield the benefits of a full Outside-In architecture 
implementation, and compensation for Inside-Out architecture limits may 
even be more costly than taking an alternative approach. 

To illustrate the process of converting an Inside-Out architecture to an 
Outside-In one, we consider how a typical Web application platform could 
be converted to an Outside-In architecture in which some Web application 
accesses all critical business functionality through a Web services layer, and 
Web services are hosted in a cloud, a service grid, or internally.

From a layered perspective, a Web application usually can be described by 
a graphic of a three-tiered architecture like the one below. 

At the top of the graphic we see a user interface layer, which usually is 
implemented using some Web server (like Microsoft’s IIS or Apache’s 
HTTP Web server) and scripting languages or servlet-like technologies 
that they support. The second layer, the business logic layer, is where all 
business logic programmed in Java, C#, Visual Basic, and php/python/perl/
tcl (or pick your favorite programming language that can be used to code 
libraries of business functionality) is put. The data layer is where code that 
manipulates basic data structures goes, and this usually is constructed 
using object and/or relational database technologies. All of these layers are 
deployed on a server configured with an operating system and network 
infrastructure enabling an application user to access Web application 
functionality from a browser or rich internet client application.

The blue and red lines illustrate that business and data logic sometimes 
are commingled with code in other layers of the architecture, making it 
difficult to modify and manage the application over time (code that is 
spread out and copied all over the architecture is hard to maintain). Ideally, 
the red and blue lines would not exist at all in this diagram, so it is here 
where we start in the process of converting this Inside-Out architecture to 
an Outside-In one. 

4  This should not suggest that clouds and elements in them are not managed, because they are. Service grids, however, impose an autonomic, active, 
and policy-based management strategy on all of the elements within their scope of control so that heterogeneous application and technology 
infrastructure can be managed through a common interface that can be applied to fine-grained grid elements as desired or necessary.

Figure 1



Cloud computing A collection of working papers    18

Addressing architecture layering and partitioning

The first step of transitioning from one architecture style to another is to 
correct mistakes relating to layering wherever possible. This requires code 
to be cleaned and commented, refactored, and consolidated so that it 
is packaged for reuse and orderly deployment, and so that cross-layer 
violations (e.g., database specifics and business logic are removed from the 
UI layer, or business logic is removed from the data layer) are eliminated.

Assuming layering violations are addressed, it makes sense then to 
introduce a service application programming interface (API) between the 
User Interface Layer and the Business Logic Layer as shown in the slightly 
modified layer diagram below:

The service layer illustrated here is positioned between the User Interface 
and lower architecture layers as the only means of accessing lower level 
functionality. This means that the concerns of one architecture layer do not 
become or complicate the concerns at other levels. 

But while we may have cleaned up layering architecture violations, we 
may not have cleaned up partitioning violations. Partitioning refers 
to the “componentizing” or “modularizing” of business functionality 
such that a component in one business functional domain (e.g., order 
management) accesses functionality in another such domain (e.g., 
inventory management) through a single interface (ideally using the 
appropriate service API). Ensuring that common interfaces are used to 
access business functionality in other modules eliminates the use of private 
knowledge (e.g., private APIs) to access business functionality in another 

domain space. Partitioning also may be referred to as factoring. When 
transitioning to a new architecture style, the first stage of partitioning 
often is implemented at the Business Logic Layer, resulting in a modified 
architecture depicted as follows:

The next phase of transformation focuses attention on partitioning 
functionality in the database so that, for example, side effects of inserting 
data into the database in an area supporting one business domain does 
not also publish into or otherwise impact the database supporting other 
business domains. 

Why go to such trouble?

Because it is possible to transition the architecture in Figure 1 to become 
like one of the depictions below. Figure 4 illustrates a well-organized 
platform that might be centrally hosted.

Figure 2

E
Figure 3

E

E

Figure 4

E

E

E



Cloud computing A collection of working papers    19

Figure 5 illustrates a well organized platform that could be hosted in a 
service grid or even many service grids.

Figures 4 and 5 make it simple to see that services and their supporting 
business logic and data functionality could be replaced easily with an 
alternative service implementation without negatively impacting other 
areas of the architecture, provided that functionality in one service domain 
is accessed by another service domain only through the service interface. 
And such capability is required in order to simplify management of an 
application portfolio implemented on such an architecture as well as 
distribute and federate service implementations.

Externalizing policy

The next step toward implementing an Outside-In architecture is to 
external both business and infrastructure policies from any of the 
functionality provisioning services illustrated in the figures above. 

Our use of the word policy connotes constraints placed upon the 
business functionality of a system, harmonized with constraints on the 
infrastructure (hardware and software) that provisions that functionality. 
These constraints could include accounting rules that businesses follow, 
role-based access control on business functionality, corporate policy about 
the maximum allowable hotel room rate that a nonexecutive employee 
could purchase when using an online reservation service, rules about 
peak business traffic that determine when a new virtualized image of an 
application system should be deployed, and the various infrastructural 
policies that might give customer A preference over customer B should 
critical resource contention require such.

Policy extension points provide the means by which policy constraints are 
exposed to business and corresponding infrastructural5 functionality and 
incorporated into their execution. They are not configuration points that 
are usually known in advance of when an application execution starts and 
that stay constant until the application restarts. Rather, policy extension 
points are dynamic and late bound to business and infrastructural 
functionality, and they provide the potential to dynamically shape 
execution of it within the deployment environment’s runtime. 

Externalizing policy highlights a significant distinction between Inside-Out 
and Outside-In architecture styles. Inside-out architectures usually involve 
legacy applications in which policy is embedded and thus externalizing it 
is — at best — very difficult. Where application policies differ in typical 
corporate environments, it becomes the responsibility of integration 
middleware to implement policy adjudication logic that may work well to 
harmonize policies over small numbers of integrated systems, but this will 
not generalize to manage policy in larger numbers of applications as would 
be the case in larger value chains. To illustrate the problem of scaling 
systems where policy is distributed throughout it, consider the system 
illustrated in Figure 6.

5  Rob Gingell and the Cassatt team are incorporating policy into their next-generation utility computing platform, called Skynet. In their parlance, policy 
primitives represent metrics used by policy extension points in support of management as a function of application demand, application service levels, 
and other policy-based priority inputs, such as total cost. The policy-based approach to management is being implemented so that infrastructure 
policy can be connected to business service level agreements. This will be fundamental to automating resource allocation, service prioritization, etc., 
when certain business functionality is invoked or when usage trends determine need. Such capability will prove invaluable as the number of elements 
within a cloud or service grid becomes large.

Figure 5

E

E

E

E



Cloud computing A collection of working papers    20

Figure 6 illustrates a system where business policy exists in multiple 
locations of the architecture as indicated by areas outlined in red. Scaling 
this architecture would be disastrous because policy would be distributed 
as copies (or, worst case, as different code bases) over a very complex 
deployment environment. But a well-factored environment like the 
ones illustrated in Figures 4 and 5 have business logic located in a single 
logical architecture layer and, from it, policy can be externalized with the 
development of adapters or similar architecture components that play the 
role of policy extension points described above. Once this is accomplished, 
the architecture we started with now begins to resemble the architecture 
illustrated in Figure 7 below, in which policy has been externalized, possibly 
federated, and put under the control of policy management services. Once 
policy from business functionality is externalized, it can be harmonized 
with infrastructure policy as feasible/desired.

Replacing application functionality with (composite) services

The final step in transforming an Inside-Out platform to an Outside-In 
platform is to replace business application code that coordinates 
invocation of multiple services with composite service if this is possible.

In Figure 7 we use the term composite service to mean business services 
formed by combining other business services (or methods thereof) 
together to form coarse (larger) business functions that are peer 
with application functionality. For example, we might see services to 
manage order fulfillment, invoice submission and payment processing, 
orchestrations with which billing staff use to prepare for invoicing, logistics 
planning, and so forth. As a kind of mental mapping between Figures 1 
and 7, the composite service functionality in Figure 7 maps to business 
logic that has leaked into Web pages of the Web application in Figure 1 
(shown with red and blue lines) that are used to manage order fulfillment, 
invoice submission, etc.

Figure 6

Figure 7



Cloud computing A collection of working papers    21

Orchestration is often equated to workflows used to coordinate some 
ordering of service method invocations. Workflow and other business 
process management technologies are now well-known within today’s 
corporations. Workflow engines for Web services have been commoditized 
through open source initiatives and by commercial software vendors. 
These engines make it possible to implement composite Web services 
as either state machine or sequential workflows. Use of state machine 
flows makes it possible to avoid prescriptively dictating how systems 
interoperate. They also provide the opportunity to incorporate human 
intelligence tasks to help resolve exception conditions that often emerge 
from composite services or straight through processing flows6.

Starting from scratch — maybe easier to do, but sometimes hard 
to sell

Many CIOs and IT executives hope that the costs and risks of transforming 
a legacy platform architecture to an Outside-In one can be amortized over 
time, and who can blame them. Most have probably spent a considerable 
sum developing the current architecture, so the last thing any IT executive 
wants to ask for is new budget sufficient to fund still more infrastructure-
level activities or require their companies to choose between new 
functionality or resolved infrastructure issues. 

But we have experienced many changes in the technology world during 
the last 20 years that strongly suggest there is value in at least considering 
whether implementing Outside-In architectures from scratch would be 
worthwhile. An interesting catch here is that this argument could have 
been made and was made at each new stage of development over the 
last 20 years. Why is the story now so different? Because today’s context 
versus just a few years ago is qualitatively different. Significant broadband 
capacity, economic storage (both self- and cloud-hosted), cheap memory 
and modern caching services, commodity 64-bit operating systems, 
XML accelerators and sophisticated application protocol management 
capabilities, commoditized integration/interoperability technologies, 
virtualization and utility computing, cloud and service grid computing, and 
other relatively recent innovations challenge the traditional wisdom that 
it is better to evolve and extend an existing platform than it is to create 
a new one that could circumvent problems from retrofitting an existing 
architecture in ways quite counter to its original design.

Coupled with these advances are elaborations of industry domains in 
the form of industry or business solution maps. These maps are used 
by consulting companies and software vendors to provide business 
process oriented views of industry, define roles played and responsibilities 
performed within business processes, begin (at least) to build out 
functional decompositions of the industry domain, and map processes to 
technology solutions where feasible. Using these maps as starting points 

streamlines process and data mapping efforts that used to take months 
to even several years to perform (in larger companies), and results in a 
detailed functional view that is necessary to build a well-formed Outside-In 
architecture.

Building from scratch is really not the same as starting with nothing but 
a blank sheet of paper. While it is unusual to find a company able to 
take a purely greenfield approach (unless it is a startup), there are ways 
for established businesses to get comfortable with taking a greenfield 
approach to developing an Outside-In architecture, and subsequently 
developing a strategy to implement it even if using components of existing 
platforms. 

Concluding remarks

Transforming an Inside-Out architecture to an Outside-In architecture 
can be a lengthy process — it is a function of existing system complexity, 
size, and age. One company who shared with us its experiences when 
making such a transition was Rearden Commerce (Rearden). Prior to three 
and a half years ago, Rearden’s architecture was composed like many of 
the Web applications we see today: three-tiered, open source Web and 
application server technologies, and a relational database. Rearden’s Web 
application exposed a framework to which merchant clients could interface 
to Rearden “services” or functions. Rearden’s management team had the 
foresight to recognize the company’s need to create a platform (not just an 
application), and the corresponding need to make architecture changes to 
support more rapid development and simpler deployment of new services. 
By this time, Rearden already had clients, so it understood that change had 
to be made transparently to its user base whenever possible or in a way 
that the user base viewed as a positive upgrade of capability to which they 
could migrate as doing so became expedient to their business. 

Rearden strengthened its leadership team with technologists who had 
participated in Web service infrastructure companies and could guide 
in Rearden’s architecture modernization. This new leadership team 
undertook a transformation of the company’s three-tiered architecture to 
a service-oriented one over a two-year period using a process like the one 
described above. At the end of the two-and-a-half-year period, Rearden 
had transformed its traditional Web application architecture to a service 
oriented one with externalized policy management. 

When performing an architecture transformation, is it necessary that all 
architecture components are entirely transformed — as was the case with 
Rearden? If there was queue-based middleware in the old architecture, 
should it be replaced? Should all old applications be replaced with custom 
applications having appropriate policy extension points?

6  Ultimately, it may prove necessary to incorporate a constraint engine into the way that services are composited to harmonize policies and dynamically 
govern execution of the composite..



Cloud computing A collection of working papers    22

The answer to these questions is it depends. Certainly it is possible to 
replace enterprise application integration technologies with commodity 
or open source technologies, simplify them, or maybe — in some cases 
— even eliminate them. It is unlikely that middleware supporting reliable 
messaging and long-lived business transactions between business partners 
needs to be totally replaced in or removed from an Outside-In architecture. 
But its use can be couched in ways that eliminate tight coupling between 
partners, and commingling of business policy with integration functionality 
that makes partner integration difficult to change as policies change or as 
a partner networks expand. 

Taking an Outside-In point of view requires that we separate concerns 
from the start. Application platforms should be viewed as distributed 
from their beginning rather than be made so after the fact by attaching 
some distribution layer to them. We must understand how we have 
permitted business security and access control models to be built into 
our architectures and how, now that technology innovations enable us 
to challenge these limits, we must remove them from our computing 
platforms to realize business agility goals that will be demanded of an 
architecture in the twenty-first-century. Technologies we’ve used in 
the past can be useful to us in the future. Success in implementing an 
Outside-In architecture is less a function of technology than it is of a 
business and technology architecture vision that forces business and 
technology architects to view business capabilities from a global, outside in 
and top down perspective.



Cloud computing A collection of working papers    23

Motivation to leverage cloud and service 
grid technologies — Pain points that 
clouds and service grids address
Introduction

It was September 2008 when Larry Ellison was asked about whether 
Oracle would pursue a cloud vision. His response at the time was that 
Oracle would eventually offer cloud computing products. But in the same 
conversation, Mr. Ellison also noted — in his inimitable fashion — that 
cloud computing was such a commonly used term as to be “idiocy.” 

Fair comment, actually, given that cloud computing is such an overloaded 
term. It can be used as a synonym for outsourced data center hosting. 
It can be used to define what Salesforce.com and NetSuite do — they 
offer software as a service. Some have referred to the Internet as the 
cloud … an uber-cloud containing all others. Cloud computing sometimes 
is imprecisely used to reference grid computing for database resource 
management or massively parallel scientific computing. And cloud 
computing has been taken to mean time sharing, which is both a style 
of business and a technology strategy that sought to share expensive 
computing resources across corporate boundaries at attractive price points. 
It appears on the surface that the IT industry has redefined much of what 
it does now and has done for quite a while as cloud computing, and that 
Oracle indeed might need only to change verbiage in a few of its ads to 
align them with a well-formed cloud vision. 

But today’s IT leaders are operating in a business climate in which intense 
commoditization and change force deployment of new IT-enabled 
business processes and require acknowledgement that business processes 
and architectures that are fixed/rigid in their definition will not scale to 
large networks of practice, that IT budgets may have reached the point 
where conventional internal cost cutting can wring out only nominal 
additional value unless business and IT processes change, and that doing 
business internationally is not the same as conducting global business 
(i.e., outsourcing is not equivalent to organizing and conducting global 
business). So, while Mr. Ellison’s remarks may express the sentiments 
of many IT leaders today who have spent a considerable amount on 
infrastructure, they cannot be correct unless the processes and techniques 
developed in IT during the past 20 years will be the foundation for 
processes and techniques of the next 20 years. 

We do not believe that twentieth-century IT thinking can or should be 
the de facto foundation for twenty-first-century IT practices. We believe 
that now, more than ever before, IT matters, and it has already become 
the critical center of business operations today. As such, IT leaders 
have no choice but to continue to chase cost and margin optimization. 
They also have no choice but to carefully set and navigate a course to 
renovate and/or replace twentieth-century practices with for twenty-first-
century practices and technologies so that product lines and services that 
companies offer today can remain relevant through significant market 
transitions.

This paper is the first in a set of three that attempt to establish a thought 
framework around cloud computing, its architectural implications, and 
migration from current computing architectures and hosting capabilities 
to cloud computing architectures and hosting services. We begin by 
exploring three IT pain points that can be addressed by cloud and service 
grid computing. Subsequent papers more completely elaborate these pain 
points and methods to handle them. 

IT pain points

There probably is a very large number of IT pain points that IT leaders in 
today’s corporations would want to see addressed by cloud and service 
grid computing. We highlight three in this paper:

Data Center Management

Architecture Transformation and Evolution (evolving current architectures 
or beginning from scratch) 

Policy-based Management of IT Platforms

Pain point: data center management

Summary: The challenges of managing a data center, including network 
management, hardware acquisition and currency, energy efficiency, and 
scalability with business demands, all are costly to implement in a way that 
easily expands and contracts as a function of demand. Also, as businesses 
aggregate and collaborate in global contexts, data center scalability is 
constrained by cost, the ability to efficiently manage environments and 
satisfy regulatory requirements, and geographic limitations. Adding to this 
complexity, the need to manage change demanded by today’s changing 
global and corporate climates underscores the need for transforming the 
ways that we manage data centers: methods of the past 5 to 10 years do 
not scale and do not provide the requisite agility that is now needed.

Cloud solutions: Cloud solutions can form the basis of a next generation 
data center strategy, bringing agility, elasticity, and economic viability to 
the fore:

Affordable elasticity, scalability
 Resource optimization through virtualization -
 Management dashboards simplify responses evoked by seasonal peak  -
utilization demands or business expansion

 Finer-grained container management capabilities (e.g., Cassatt’s) will  -
serve to fine tune elasticity policies

 Capability to affordably deploy many current technology-based  -
applications as they exist today, possibly to re-architect them over 
time



Cloud computing A collection of working papers    24

 Minimized capital outlay, which is especially important for startups,  -
where initial funding is way too limited to use to capitalize 
infrastructure

 Extreme elasticity — handling spikes of traffic stemming from  -
something catching on or “going viral” (e.g., having to scale from 50 
to 5000 servers in one day because of the power of social media)

 Affordable and alternative provisioning of disaster recovery
 Cloud data storage schemes provide a different way to persistently  -
store certain types of information that make explicit data replication 
unnecessary (storage is distributed/federated transparently)1 

 Creation of virtual images of an entire technology stack streamlines  -
recovery in the event of server failure

 Utility computing management platforms enable consistent  -
management across data center boundaries. Evolution of utility 
computing to enable cloud composition will simplify implementation 
of failover strategies

Affordable state-of-the-art technology
 The exponential nature of digital hardware advances makes the  -
challenge of keeping hardware current particularly vexing. Buying 
cloud services transfers the need to keep hardware current to the 
cloud vendor — except, possibly, as this applies to mainframe or 
other legacy technologies that remain viable

 It is reasonable to expect cloud vendors to offer specialized hardware  -
capabilities (e.g., DSP/GPU/SMP capabilities) over time in support of 
gaming/graphics, parallel/multithreaded applications, etc. 

 Specialized hardware needs (e.g., mainframe-based) probably will not  -
be the responsibility of the cloud vendor, but there is no reason why 
a private cloud/service grid should not be able to be composed with a 
public cloud/service grid

Operational agility and efficiency — cloud vendors will oversee 
management of hardware and network assets at a minimum. Where 
they provide software assets or provision a service grid ecosystem, they 
likely will provide software stack management as well

 Management of assets deployed into a cloud is standardized.  -
Management dashboards simplify the management and deployment 
of both hardware and software

Energy efficiency becomes the cloud vendor’s challenge. The scale of 
a cloud may well precipitate the move to alternative cooling strategies 
(e.g., water vs. fan at hardware (board/hardware module) levels), air 
and water cooling of data centers, increased management software 
capabilities to interoperate with data center policies to control power up/
down of resources and consolidate (on fewer boxes) processes running 
in a cloud given the visibility to utilization, service level agreements, 
etc. One could even imagine implementing a power strategy that 
continuously moves resource intensive applications to run where power 
is less expensive (e.g., power might be less expensive at night than the 

day so keep running this application on the dark side of the earth)
 Big enterprise capabilities for small company prices -
 Startups can use and stay with cloud solutions as they grow and  -
become more established

 Hardware and data center cost-savings and staff cost optimizations 
enable businesses to self-fund innovative IT initiatives

 Those who wish to leverage the cloud’s functional capabilities will  -
have to build their own capabilities (e.g., services and/or applications) 
to interoperate with resources in the cloud provided that they wish to 
do more than simply use a cloud as outsourced hosting

Security compliance (e.g., security of information and data center 
practices, PCI data security compliance) will increasingly become the 
responsibility of cloud vendors

 This will be true especially as clouds become/evolve into service grids,  -
as cloud vendors geographically distribute their capabilities, and as 
specialized clouds are provisioned to serve specific industries. Where 
there may be constraints on location of data, policies to guarantee 
data will be stored as required, together with auditing/monitoring 
procedures will have to be put into place

 In today’s outsourced hosting environments, clients work with service  -
providers using audits to identify gaps in security strategies and 
compliance, and to ensure that such gaps are quickly closed. We 
expect the same to be true in cloud contexts — especially where new 
distributed storage technologies can be used. Further, we expect that 
emphasis on the use of policy to deal with security, data privacy, and 
regulatory requirements ultimately will distinguish cloud vendors and 
their technologies from service grid vendors, who will focus on the 
construction and management of a policy-driven business ecosystem 
leveraging cloud computing

Pain point: architecture transformation/evolution (the Brownfield 
vs. Greenfield Conundrum)

Summary: Significant investment in application platforms in the last 
10 years have resulted in heterogeneous best-of-breed application 
systems that have proved hard and costly to integrate within corporate 
boundaries. Scaling them beyond corporate boundaries into corporate 
networks of practice takes integration to a level of complexity that appears 
insurmountable, but the perceived costs of starting fresh seem equally so. 
IT leadership knows it must do something about the application portfolio 
it has assembled to make it interoperable with partner networks without 
requiring massive technology restructure in unrealistically short time 
periods. It also knows the business must quickly respond to global market 
opportunities when they present themselves. How does IT Leadership 
guide the architectural evolution and transformation of what exists today 
to enable rapid-fire response without starting from scratch or trying to 
change its application platform in unrealistic time periods? 

1   It is interesting to consider the implications that new cloud persistence schemes can have on registries like public DNS and Web service registries. 
Were these registries to be hosted in a cloud, it might be possible to rethink their implementation so as to simplify underlying database replication 
and streamline propagation of registry updates.



Cloud computing A collection of working papers    25

Cloud solutions: Cloud solutions can form the basis of an application 
portfolio management strategy that can be used to address tactical 
short-term needs, e.g., interoperability within a business community of 
practice using the cloud to provision community resources, and to address 
the longer-term needs to optimize the application portfolio and possibly 
re-architect it.

Cloud vendors offer the capability to construct customized virtualized 
images that can contain software for which a corporation has licenses. 
Hosting current infrastructure in a cloud (where such is possible) provides 
an isolated area in which a corporation or corporate partners (probably 
on a smaller scale due to integration complexities associated with older 
infrastructure and application technologies) could interoperate using 
existing technologies

 Why would companies do this?  -
 To move quickly with current platforms

 To economically host applications, minimize private data center 
modifications, and, in so doing, self-fund portfolio optimization and/or 
re-architecture work

 Use current capabilities, but shadow them with new capabilities as 
they are developed — ultimately replacing new with old 

 Simplify architecture by removing unnecessary moving parts

Cloud vendors offer application functionality that could replace existing 
capabilities (e.g., small-to-large ERP, CRM systems). Incorporating this 
functionality into an existing application portfolio leads to incremental 
re-architecture of application integrations using newer technologies and 
techniques (Brownfield), which, in turn, should result in service-oriented 
interfaces that can become foundational to future state. An incremental 
move toward a re-architected platform hosted using cloud technologies 
may prove to be the only way to mitigate risks of architectural 
transformation while keeping corporate business running. Conversely, 
clouds also represent locations where Greenfield efforts can be hosted. 
Greenfield efforts are not as risky as they sound given the maturity (now) 
of hosted platforms like SalesForce, NetSuite, etc.

 How quickly can transformation of an existing platform be  -
accomplished? This depends upon the architectural complexity of 
what is to be transformed or replaced. A very complex and tightly 
coupled architecture might require several years to decouple so 
that new architecture components could be added — assuming 
no Greenfield scenario is desired or feasible — whereas it might be 
possible to move a simply structured Web application in a matter of 
hours. A platform that has specialized hardware requirements (e.g., 
there is mainframe dependency, or digital signal processing hardware 
is required) might have to be privately hosted, or be hosted partly in 
public and partly in private clouds

Cloud application programming interfaces (APIs), together with the 
concepts of distribution, federation, and services that are baked in, 
provide a foundation on which to implement loosely coupled, service-
oriented architectures and can logically lead to better architecture

 Web services, reliable queuing, and distributed storage (nonrelational  -
with somewhat relational interfaces, and relational) provide 
foundational infrastructure capabilities to implement modern 
architectures using standardized APIs (e.g., WS-*)

 Standardized interfaces, loose architecture couplings, and  -
standardized deployment environments and methods increase reuse 
potential by making it easier to compose new services with existing 
services

Clouds provide a means to deal with heterogeneity
 Initially, heterogeneity is dealt with through management layers -
 Better architecture as noted above further enhances this as  -
heterogeneity is encapsulated beneath standardized and service-
oriented APIs

 Once heterogeneity is contained, a portfolio optimization/ -
modernization strategy can be put into place and implemented

Pain point: policy-based management of IT platforms

Summary: Policy constraints are difficult to impossible to implement 
especially in a rapidly changing world/context. Business processes and 
policies are embedded in monolithic applications that comprise corporate 
business platforms today. Even the bespoke applications constructed in 
the past 10 years share this characteristic since policy and process were 
not treated as formal architecture components. Consequently, application 
scalability vis-à-vis provisioning policy-driven business capabilities is 
limited. Organizational model changes, e.g., mergers and acquisitions (or 
divestitures) or corporate globalization into very loosely coupled business 
networks, underscore the need for policy to be made explicit. The ability 
to conduct business in a quickly changing world will be a direct function of 
the capability to manage using policy. 

Service grid solutions: In one sense, this pain point can be considered 
to be related to the Brownfield/Greenfield Conundrum that, if addressed, 
results in a distributed/federated, service-oriented, loosely coupled 
architecture in which policy can be factored out and considered a first-
order architecture component. However, it also is clear that: (1) everyone 
does not need policy factored like this; and (2) where policy must be 
exposed may vary by domain, community, geography, etc. Hence we 
deal with this pain point separately and consider the need to address it a 
prerequisite condition to leveraging the full capabilities of a service grid.

Corporations require enterprise qualities in architectures, and they will have 
the same expectations of clouds where they will deploy critical platforms. 
Scaling architectures for use in increasingly larger communities as well as 
simply making platforms that are far more configurable and compositional 
requires the ability to expose policy extension points that can be 
incorporated into a management scheme that can implement and enforce 
policy across the entire technology stack. The result of such architecturally 



Cloud computing A collection of working papers    26

pervasive policy management is that control over environmental as well 
as business constraints is provisioned. When corporate architectures are 
deployed into service grids, these policy extension points must be used 
even in grids composed of other grids. 

Cloud vendors are implementing utility computing management 
capabilities, which are, themselves, policy driven. As these capabilities are 
further refined, it will become feasible to integrate business policies with 
infrastructure management policies on which business and infrastructure 
service level agreements/processes can be based

Outside-In architectures (in our view, service-oriented architecture 
properly done) provision interfaces that easily align with business 
processes and minimize architecture complexity, resulting in a simpler 
architecture in which policy is externalized. Externalized policy provides 
the opportunity for business policy to join with infrastructure policy

Externalized policy provides the foundation on which policy-driven 
business processes can be constructed and managed. This results 
in increased business agility because it simplifies how businesses 
interoperate: they interoperate at the business process level, and not 
at the technology level; policies can be changed with significantly less 
impact on the code that provisions business functionality

Cloud vendors use containers to deploy functionality. As these containers 
become permeable such that their contents can both be managed and 
expose policy extension points, then policies can span the entire cloud 
and grid technology stacks

Service grids provision architecture components, e.g., policy engines 
and interaction services, that enable policy to be managed/harmonized 
explicitly and separately from other business functionality — across 
architecture layers, across business networks of practice — and used as 
the foundation of business interactions

 It is important to note that policy is viewed as a constraint continuum  -
covering infrastructure management to domain (regulatory, industry/
market sector) policy constraints

Concluding Remarks: To the 21st century and beyond

We see, in this paper, that cloud computing can be used to address tactical 
problems with which IT continually deals, like resource availability and 
reliability, data center costs, and operational process standardization. These 
near-term objectives represent sufficient justification for companies to use 
cloud computing technologies even when they have no need to improve 
their platforms or practices. But there are longer-term business imperatives 
as well, like the need for a company to be agile in combining their 
capabilities with those of their partners by creating a distributed platform 
that will drive aggressively toward cloud and service grid computing. We 
believe that clouds, service grids, and service-oriented architectures are 
technologies that will be fundamental to twenty-first-century corporations’ 
successfully navigating the changes that they now face. 

The pain points discussed above illustrate a progression of change that 
most corporations have already begun, whether they are just starting up 
or are well established. We began with use of cloud hosting services as an 
alternative to self-hosting, or as an alternative to other current day third-
party hosting arrangements that do not offer at least the potential of cloud 
computing. For those companies that need to pursue implementation and 
management of a service-oriented architecture, we discussed pain points 
relating to re-architecting current platforms to leverage cloud computing, 
and the possible need to formalize the way that policy is used to manage 
IT platforms within and across service grid boundaries.

Many of the concepts mentioned in the pain point discussions are 
architectural, and are not defined at all in this paper. However, they are 
more completely elaborated in our other papers, called Demystifying 
Clouds: Exploring Cloud and Service Grid Architectures, and Moving 
Information Technology Platforms To The Clouds: Insights Into IT Platform 
Architecture Transformation.



Cloud computing A collection of working papers    27

About the authors

Thomas B (Tom) Winans is the principal consultant of Concentrum Inc., a 
professional software engineering and technology diligence consultancy. 
His client base includes Warburg Pincus, LLC and the Deloitte Center 
for the Edge. Tom may be reached through his Website at http://www.
concentrum.com.

John Seely Brown is the independent co-chairman of the Deloitte Center 
for the Edge, where he and his Deloitte colleagues explore what executives 
can learn from innovation emerging on various forms of edges, including 
the edges of institutions, markets, geographies, and generations. He is also 
a Visiting Scholar and Advisor to the Provost at The University of Southern 
California. His Website is at http://www.johnseelybrown.com.

i The Vision of Autonomic Computing, by Jeffrey O Kephart and David M Chess, IBM Thomas J Watson Research Center, 2001

ii Autonomic Computing Manifesto, http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf, International Business Machines 
Corporation 2001

iii Web Services 2.0, by Thomas B Winans and John Seely Brown, Deloitte, 2008

iv Identity Management, by Bill Coleman, Working Paper, 2009

v Service Grids: The Missing Link in Web Services, by John Hagel III and John Seely Brown, Working Paper Series, 2002

vi Beyond Being There: A Blueprint for Advancing the Design, Development, and Evaluation of Virtual Organizations, National Science Foundation, May 2008

vii Web Services 2.0, by Thomas B Winans and John Seely Brown, Deloitte, 2008

viii Demystifying Clouds: Exploring Cloud and Service Grid Architectures, by Thomas B Winans and John Seely Brown, Deloitte, 2009



About the Deloitte LP Center for the Edge
The Deloitte Center for the Edge conducts original research and develops substantive points of view for new corporate growth. The Silicon 
Valley-based Center helps senior executives make sense of and profit from emerging opportunities on the edge of business and technology. 
Center leaders believe that what is created on the edge of the competitive landscape—in terms of technology, geography, demographics, 
markets—inevitably strikes at the very heart of a business. The Center’s mission is to identify and explore emerging opportunities related to 
big shifts that aren’t yet on the senior management agenda, but ought to be. While Center leaders are focused on long-term trends and 
opportunities, they are equally focused on implications for near-term action, the day-to-day environment of executives.

Below the surface of current events, buried amid the latest headlines and competitive moves, executives are beginning to see the outlines of 
a new business landscape. Performance pressures are mounting. The old ways of doing things are generating diminishing returns. Companies 
are having harder time making money—and increasingly, their very survival is challenged. Executives must learn ways not only to do their jobs 
differently, but also to do them better. That, in part, requires understanding the broader changes to the operating environment:

Decoding the deep structure of this economic shift will allow executives to thrive in the face of intensifying competition and growing economic 
pressure. The good news is that the actions needed to address near-term economic conditions are also the best long-term measures to take 
advantage of the opportunities these challenges create. For more information about the Center’s unique perspective on these challenges, visit 
www.deloitte.com/centerforedge. 

About Deloitte
Deloitte refers to one or more of Deloitte Touche Tohmatsu, a Swiss Verein, and its network of member firms, each of which is a legally separate 
and independent entity. Please see www.deloitte.com/about for a detailed description of the legal structure of Deloitte Touche Tohmatsu and its 
member firms. Please see www.deloitte.com/us/about for a detailed description of the legal structure of Deloitte LLP and its subsidiaries.

Copyright © 2009 Deloitte Development LLC. All rights reserved.
Member of Deloitte Touche Tohmatsu

Contact us

For further information, please contact:

John Hagel
Co-chairman, Deloitte LLP Center for the Edge
Director, Deloitte Consulting LLP
+1 408 704 2778
jhagel@deloitte.com

Glen Dong
Chief of Staff, Deloitte LLP Center for the Edge
Senior Manager, Deloitte Services LP
+1 408 704 4434
gdong@deloitte.com

Christine Brodeur
National Marketing Lead, Deloitte LLP Center for the Edge
Senior Manager, Deloitte Services LP
+1 213 688 4759
cbrodeur@deloitte.com


	Foreword

	Demystifying clouds - Exploring cloud and service grid architectures
	Moving information technology platforms to the clouds - Insights into IT platform architecture transformation
	Motivation to leverage cloud and service grid technologies - Pain points that clouds and service grids address

